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ARTICLE INFO  The subject of the work is a symmetrical sandwich beam with clamped ends under 

uniformly distributed load. The system of two equilibrium equations, formulated taking 

into account the literature, was solved analytically. The function of the shear effect and the 

maximum deflection of the beam were determined. The stress state at the clamped end of 

the beam is described in detail. The significant influence of the shear effect on the normal 

stresses in the outer layers of the beam near the clamped end was indicated. Exemplary 

calculations were made for the adopted family of beams. Moreover, the numerical FEM 

model of the beam was developed and calculations were made for this adopted family of 

beams. A comparative analysis of the obtained results was carried out.  
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1. Introduction  

The sandwich structures are intensively improved 

in 21
st
 century and used in different engineering con-

structions. Icardi [4] presented the zig-zag theory for 

the analysis of laminated and sandwich beams and 

pointed out the advantages of using higher-order ap-

proximations of displacements in sublaminates. Carre-

ra and Brischetto [2] presented a review of the prob-

lems on bending and vibration of sandwich panels and 

various theories: classical, higher order, zig-zag, lay-

ered and mixed. Birman and Kardomateas [1] re-

viewed the theoretical basis and problems in the de-

sign of sandwich structures. Moreover, the author 

indicated their possible applications in the aerospace, 

civil and marine engineering. Hao et al. [3] presented 

a new model of a multilayer beam under three-point 

bending with clamped ends and proposed a theoretical 

prediction of its large deflection. Kozak [5] described 

the steel sandwich panels and their applications in 

ship structures. Magnucki [7] pointed out the similari-

ty of the analytical modelling of the sandwich beam 

and the homogenous I-beam. Sayyad and Ghugal [10] 

presented the review of the 250 selected papers on the 

modelling functionally graded sandwich beam and 

suggested possible areas for further research. Mag-

nucki et al. [8] studied analytically, numerically and 

experimentally four-point bending of the simply sup-

ported sandwich plate-strip. Magnucki et al. [9] de-

veloped three analytical models of the simply sup-

ported sandwich beam and investigated analytically 

end numerically its bending, buckling and free flexur-

al vibration. Kustosz et al. [6] presented the bending 

problem of the stepped sandwich beam with clamped 

ends subjected to uniformly distributed load. The de-

tailed calculations were carried out analytically and 

numerically FEM for exemplary beams. 

The subject of the paper is a classical sandwich 

beam of length L with clamped ends subjected to the 

uniformly distributed load of intensity q (Fig. 1).  

 

Fig. 1. Scheme of the sandwich beam  

The cross section of the beam is a rectangle with 

depth h and width b. The thicknesses of the faces are 

hf, whereas of the core is hc, therefore h = 2hf + hc.  
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2. Analytical studies of the beam bending  

2.1. Analytical model of the beam  

Taking into account the papers [7–9], the plane 

cross section of the sandwich beam with consideration 

of the "broken line" theory is deformed after its bend-

ing as shown in Fig. 2.  

 

Fig. 2. Scheme of the beam cross-section deformation  

The longitudinal displacements based on the above 

scheme (Fig. 2) are as follows:  

 the upper face –1/2 ≤ η ≤ –χc/2  

 u(uf)(x, η) = −h [η
dv

dx
+ ψf(x)]   (1) 

 the core –χc/2 ≤ η ≤ χc/2  

 u(c)(x, η) = −hη [
dv

dx
−

2

χc
ψf(x)]   (2) 

 the lower face χc/2 ≤ η ≤ 1/2  

 u(lf)(x, η) = −h [η
dv

dx
− ψf(x)]   (3) 

where: η = y/h – dimensionless coordinate, v(x) – 

deflection, χc = hc/h – dimensionless thickness of the 

core, ψf(x) = uf(x)/h – dimensionless longitudinal dis-

placement – shear effect function.  

Consequently, the strains and stresses in successive 

layers are in the form:  

 the upper face –1/2 ≤ η ≤ –χc/2  

 εx
(uf)(x, η) =

∂u

∂x
= −h [η

d2v

dx2 +
dψf

dx
] (4) 

 γxy
(uf)(x, η) =

∂u

∂y
+

dv(x)

dx
= 0    (5) 

 σx
(uf)(x, η) = Efεx

(uf)(x, η)    (6) 

 the core –χc/2 ≤ η ≤ χc/2  

 εx
(c)(x, η) =

∂u

∂x
= −hη [

d2v

dx2 −
2

χc

dψf

dx
] (7) 

 γxy
(c)(x, η) =

∂u

∂y
+

dv(x)

dx
=

2

χc
ψf(x)   (8) 

 σx
(c)(x, η) = Ecεx

(c)(x, η)   (9) 

 τxy
(c)

(x, η) =
Ec

2(1+νc)
γxy

(c)
(x, η)   (10) 

 the lower face χc/2 ≤ η ≤ 1/2  

 εx
(lf)

(x, η) =
∂u

∂x
= −h [η

d2v

dx2 −
dψf

dx
]    (11) 

 γxy
(lf)

(x, η) =
∂u

∂y
+

dv(x)

dx
= 0   (12) 

 σx
(lf)

(x, η) = Efεx
(uf)

(x, η)   (13) 

where: Ef, Ec – Young’s modules of faces and the 

core, νc – Poisson ratio of the core.  

Taking into account the principle of the maximum 

potential energy δ(Uε − W) = 0, the system of two 

differential equations of equilibrium of this beam is in 

the following form:  

 Cvv
d2v

dx2 − Cvψ
dψf

dx
= −12

Mb(x)

Efbh3   (14) 

 Cvψ
d3v

dx3 − Cψψ
d2ψf

dx2 + Cψ
ψf(x)

h2 = 0  (15) 

where: dimensionless coefficients  

Cvv = 1 − (1 − ec)χc
3, Cvψ = 3 − (3 − 2ec)χc

2 

Cψψ = 4[3 − (3 − ec)χc], Cψ =
24

1+νc

ec

χc
, ec =

Ec

Ef
 

and the bending moment  

 Mb(x) =
1

2
(xL − x2)q − Mc   (16) 

where Mc – the unknown clamped-ends moment.  

This moment (16) is formulated based on the Fig. 

3. The vertical reaction R= qL 2⁄ .  

 

Fig. 3. Scheme of the beam end with the load and reactions 

2.2. Analytical research of the stress state in the beam  

The system of two differential equations (14) and 

(15) with consideration of the bending moment (16) 

after simple transformation, is reduced to one differ-

ential equation  

 
d2ψf

dξ2 − (αλ)2ψf(ξ) = −6
(1−2ξ)Cvψ

CvvCψψ−Cvψ
2

qλ3

Efb
  (17) 

where: ξ = x/L – the dimensionless coordinate, λ = 

L/h – relative length of the beam, and α =

√
CvvCψ

CvvCψψ−Cvψ
2    – the dimensionless coefficient.  
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The solution of this equation is the shear effect 

function in the form  

 

Ψf(ξ) = C1 sinh(αλξ) + C2 cosh(αλξ) +

+6(1 − 2ξ)
Cvψ

CvvCψ
λ

q

Efb

  (18) 

where: C1, C2 – integration constants.  

Taking into account the following two conditions: 

ψf(0) = 0 – clamped end, and ψf(1/2) = 0 – symmetry 

plane of the beam, these constants are determined as 

follows C1 = −
C2

tanh(αλ 2⁄ )
, C2 = −6

Cvψ

CvvCψ
λ

q

Efb
.  

Thus, the function (18) is in the following form  

 Ψf(ξ) = ψ̃f(ξ)
q

Efb
   (19) 

where  

 ψ̃f(ξ) = 6 {1 − 2ξ −
sinh[(1−2ξ)αλ 2⁄ ]

sinh(αλ 2⁄ )
}

Cvψ

CvvCψ
λ   (20) 

The equation (14) with consideration of the ex-

pression (16), and in the dimensionless coordinate ξ, 

after first integration is as follows  

 
Cvv

dv̅

dξ
= C3 + Cvψψf(ξ) −

               −6 (
1

2
ξ2 −

1

3
ξ3 − 2M̅cξ) λ3 q

Efb

 (21) 

where: v̅(ξ) =
v(ξ)

L
 – the relative deflection, C3 – the 

integration constant, M̅c =
Mc

qL2 – the dimensionless 

clamped-ends moment.  

Taking into account two conditions: 
dv̅

dξ
|0 = 0 and 

ψf(0) = 0 one obtains the integration constant C3 = 0, 

and based on conditions: 
dv̅

dξ
|1/2 = 0 and ψf (

1

2
) = 0 

one obtains the dimensionless moment M̅c =
1

12
.  

Therefore, the equation (21) is in the form  

 Cvv
dv̅

dξ
= Cvψψf(ξ) − (3ξ2 − 2ξ3 − ξ)λ3 q

Efb
   (22) 

This equation after integration is as follows  

 
Cvvv̅(ξ) = {C4 + 6f1(ξ)

Cvψ
2

CvvCψ
λ −

               − (ξ3 −
1

2
ξ4 −

1

2
ξ2) λ3}

q

Efb

 (23) 

where f1(ξ) = ξ − ξ2 +
cosh[(1−2ξ)αλ 2⁄ ]

αλ sinh(αλ 2⁄ )
   – the func-

tion, and C4 – the integration constant.  

Taking into account the condition v̅(0) = 0, the in-

tegration constant was determined in the form  

C4 = −
6

αλ tanh(αλ 2⁄ )
 

Cvψ
2

CvvCψ
  

Thus, the relative maximum deflection of this 

beam is as follows  

 v̅max = v̅ (
1

2
) = ṽmax

q

Efb
   (24) 

where the dimensionless maximum deflection 

 ṽmax = (1 + Cse
(v)

)
λ

3

32Cvv
   (25) 

and the shear effect coefficient of the bending  

 Cse
(v)

= 48 [1 − 4
cosh(αλ 2⁄ )−1

αλ sinh(αλ 2⁄ )
]

Cvψ
2

CvvCψ
 

1

λ
2  (26) 

The normal stresses (6) in the upper face with con-

sideration of the expressions (19) and (22), after simp-

ly transformation, is as follows  

 
σx

(uf)(ξ, η) = {(1 + η
Cvψ

Cvv
) f2(ξ)

Cvψ

Cψ
+

               +η (ξ − ξ2 −
1

6
) λ2}

1

Cvv

q

b

 (27) 

where f2(ξ) = 2 − αλ
cosh[(1−2ξ)αλ 2⁄ ]

sinh(αλ 2⁄ )
   – the function.  

Therefore, the maximum normal stresses for the 

clamped end (ξ = 0) of the beam, and in the upper 

surface of its upper layer (η = –1/2), is as follows  

 σx,max
(uf)

= σx
(uf)

(0, −
1

2
) =

1

2
(1 + Cse

(σ)
)

λ
2

Cvv
 
q

b
 (28) 

where the shear effect coefficient of the normal stress  

 Cse
(σ)

= 12 (
Cvψ

Cvv
− 2) [

αλ

2 tanh(αλ 2⁄ )
− 1]

Cvψ

Cψ

1

λ
2  (29) 

The detailed calculations are carried out for the ex-

emplary sandwich beams with the following data: λ = 

20, χc = 17/20, νc = 0.3, ec = 1/20, 1/35, 1/50.  

The shape of the shear effect function (20) is 

shown in the Fig. 4.  

 

Fig. 4. The graph of the shear effect function (20)  

The detailed calculation of the maximum values of 

the shear effect function (20) and the dimensionless 

coefficients (25) and (26) of the maximum deflections 

are specified in Table 1.  

Table 1. The selected results – analytical calculations  

ec  1/20  1/35  1/50  

ξ0  0.170  0.0204  0.0231  

ψ̃f(ξ0)  230.2  398.1  564.0  

Cse
(v)

  0.2142  0.3597  0.5045  

ṽmax  728.66  842.60  944.65  
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Moreover, the values of the maximum normal 

stresses (28), with consideration of the value q/b = 

1/10 MPa, are specified in the Table 2.  

Table 2. The maximum normal stresses – analytical calculations  

ec  1/20  1/35  1/50  

Cse
(σ)

  0.6272  0.8091  0.9575  

𝜎x,max
(uf)

 [MPa]  78.12  89.69  98.33  

 

Analyzing the values of shear coefficients Cse
(v) (Ta-

ble 1) and Cse
(σ) (Table 2) may be easily noticed that 

their values are large, therefore the share of the shear 

effect in the maximum deflection of the beam, and 

especially in normal stresses at the clamped end of the 

beam is significant.  

3. Numerical FEM studies of the bending beam  

3.1. Numerical FEM model of the beam  

The numerical model of the tested sandwich beam 

was developed in the ABAQUS 6.12 system with the 

use of the same data as in analytical research. The 

model represents only half of the beam due to its 

symmetry. The mesh consists of 19551 hexahedral 

quadratic finite elements (Fig. 5). 

 

Fig. 5. The FEM numerical model of the example beam  

3.2. Numerical FEM research of the beam  

The results of numerical research of the maximal 

deflection of the beam are presented in Table 3. 

Moreover, the percentage differences between 

analytical and numerical value of the maximal 

deflection of the beam were obtained according to the 

formula ∆= (|ṽmax
(AN)

− ṽmax
(FEM)

|/ṽmax
(AN)

) ∙ 100%. 

Table 3. The maximal deflection results  

ec  1/20  1/35  1/50  

ṽmax
(AN)

 728.66  842.60  944.65  

ṽmax
(FEM)

 728.10 842.76 945.54 

∆ 0.077 0.019 0.094 

 

Similarly, the results of the maximum normal 

stresses at the clamped end of this sandwich beam are 

presented in Table 4.  

Table 4. The maximum normal stresses 

ec  1/20  1/35  1/50  

σx,max
(uf)(AN)

  [MPa] 78.12  89.69  98.33  

σx,max
(uf)(FEM)

  [MPa] 77.51 87.44 95.14 

∆ 0.781 2.509 3.244 

 

An exemplary distribution of normal stresses in the 

end part of the beam is presented in Fig. 6. 

 

Fig. 6. Distribution of normal stresses in the end part of the beam  

The comparison of the results obtained analytically 

and numerically shows that the differences in the 

maximum deflection values are less than 1%. In turn, 

the differences between normal stresses obtained from 

analytical and numerical research are below 3.5%. 

4. Conclusions  

In this article the bending of the sandwich beam 

with clamped ends was considered. The analytical 

model of this beam was developed according to the 

“broken-line” theory. Particular attention was paid to 

the shear effect and its influence on the value of 

deflection and normal stresses in the end parts of the 

beam.  

The analytical research have shown that the shear 

effect has a significant influence on deflection and 

normal stresses. It can be easily noticed taking into 

account Cse values. The values of this coefficient 

range from 0.2 to 0.5 (Table 1) and from 0.6 even to 

0.9 (Table 2). This means that the share of the shear 

effect in deflection is up to 50%, and in normal 

stresses up to 90%. 

For comparision, an analogous numerical model 

was developed. Abaqus software was used both for 

modeling and calculating. Differences in deflection 

values obtained from analytical and numerical 

research were below 1%. In turn, the values of normal 

stresses in end part of the beam differ by a maximum 

of 3.5%. 

The considered beam can be used in the 

construction of rail vehicles as a structural element of 

the body, e.g. the floor of a rail vehicle. 
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